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A method for studying the dynamical properties of liquids by molecular 
dynamics simulation is described. Its basis is the measurement of the 
response to a weak applied field of appropriate character. The explicit form 
of the mechanical perturbation is worked out in several cases, and details 
are given of the numerical techniques used in implementing the method. 

KEY W O R D S  : Molecular dynamics ; transport properties ; linear response 
theory. 

1, I N T R O D U C T I O N  

The purpose of this paper is to present in general form a nonequilibrium 
method for studying the dynamical properties of liquids in the context of 
molecular dynamics calculations. The conventional approach is to compute 
the time correlation functions that describe the decay of spontaneous fluctua- 
tions in the variables of interest. The correlation functions in question are 
properties of the system in equilibrium, but from linear response theory we 
know that they can also be related to the response of the system to a weak 
external field of appropriate character. Our approach is more direct, since 
we choose to measure the response itself; to that extent our work may be 
regarded as a realization of  the "thought-experiments" of Kubo and 
Luttinger51-4) A number of results obtained in this way have already been 
reported, (5-7) but until now we have progressed in a largely intuitive fashion. 
The more formal development given here is intended to give a firm theoretical 
basis to the method. Given this starting point, it should be easy to generalize 
the approach to cover a much wider range of phenomena than those we 
discuss explicitly. At the same time we take the opportunity of describing in 
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greater detail than hitherto the numerical techniques used in implementing 
the method. 

' In  attempting to characterize the dynamical behavior of a system in 
terms of the response to a weak applied field we encounter at once two major 
problems. The first is the old question of how to represent in mechanical terms 
the generalized forces required to excite the responses that are of interest, 
including in particular the representation of the gradients necessary to induce 
a current of momentum or of energy. This has as a corollary the question of 
how to incorporate such forces into the molecular dynamics algorithm. The 
second difficulty concerns the measurement of the response, since in the linear 
regime this will be, at best, comparable in magnitude with the thermal 
fluctuations in the system. If  these two problems can be overcome, we shall 
have at our disposal a method for probing systematically the dynamics of 
systems of interacting particles, including a variety of small cross effects which 
are impractical to study by the usual equilibrium techniques. 

Let us first formulate the problem in very general terms. If  (a~(r))t is the 
flux induced in a microscopic variable r then in a linear approximation 
we can write 

(a,(r))t  = dt' drLu~(r - r', t - t ')F,(r ' ,  t ') (1.1) 
o0 

where ( ' " ) t  denotes an average on a nonequilibrium ensemble and F~ is an 
external field conjugate to the variable a~, i.e., we assume that the interaction 
with the system is described by the Hamiltonian 

~( t )  = - ~  f dr c~(r)g~(r, t) (1.2) 

Given the correct choice of ~ ,  the system of equations (1.1) reduces to the 
phenomenological laws of irreversible thermodynamics in the limit when the 
applied fields vary slowly in space and time. This means that with any 
thermodynamic force appearing in the phenomenological laws we may asso- 
ciate a mechanical force, which is the gist of the indirect Kubo method, c4) 
In the more general case (k, co > 0) we may rewrite Eq. (1.1) in the form 

= o 0 L ( k ,  (1.3) 

If  we choose the set of variables ~(r )  to be the microscopic conserved variables 
associated with the independent fluxes appearing in the expression for entropy 
production, the quantities L~(k, w) form the tensor of kinetic coefficients 
which in the limit k, co ~ 0 (taken in the right order) yields the transport 
coefficients of  hydrodynamics. 

Given the correspondence between thermodynamic and mechanical 
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forces, it is clear that once we have identified the explicit form of the 
mechanical forces the method of molecular dynamics can be used to 
study irreversible processes in a direct way by exploitation of Eq. (1.1). By 
computing the fluxes induced by weak external fields of appropriate character 
we could, in particular, evaluate the various elements in the matrix of kinetic 
coefficients. Before this program can be carried through successfully, a 
solution must be found to the second problem mentioned above. The device 
we use is a "subtract ion"  technique, the justification for which is the fact that 
a nonequilibrium average obtained by applying a perturbation to the system 
can be transformed into an average over an equilibrium ensemble by the 
operation 

(A)t =- (A, p(t)) = (A, exp( i~ t )  po) = (exp( - iSe t )  A, po) 

- ( exp ( - i~a t )  A)o (1.4) 

where ~ is the Liouville operator of the perturbed system, po is the equilib- 
rium probability distribution, and p(t) is the perturbed probability distribu- 
tion, with p(t = 0) = po; the symbol (..., ...) is used to denote an integral 
over phase space and ( ' " )o  denotes an equilibrium average. Thus, in order to 
improve the signal-to-noise ratio in the calculation of (A)t,  we subtract from 
exp(-iLz~t)A the quantity exp(-iLPot)A, where Se0 is the unperturbed 
Liouville operator, and compute the difference 

AA(t) = exp(iSet) A - exp(-iLPot) A (t.5) 

the equilibrium average of which is 

(AA(t))o = ( A ) t -  (A)o (1.6) 

This procedure yields the dynamical response we wish to measure with an 
accuracy which is high if t is not too large. The reason for this is simply the 
fact that random fluctuations in the two terms in Eq. (1.5) are highly corre- 
lated and therefore largely cancel, leaving only the systematic part, i.e., the 
response to the perturbation. 

At this point it might be helpful to describe briefly what we do in practice. 
We carry out a molecular dynamics run in the normal way, but in addition, at 
regular intervals in time, we apply a small perturbation to the system, which 
in the general case involves adjusting the coordinates and momenta of all 
particles in a prescribed way. Thereafter the paths of the particles in per- 
turbed and unperturbed trajectories are followed simultaneously and the time 
variation of the response is calculated as the difference in the relevant 
dynamical variable. This yields the mechanical response defined by Eq. (1.5), 
and the statistical response represented by Eq. (1.6) is obtained via the ergodic 
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theorem by averaging the mechanical response over a number (typically 
50-100) of such pairs of trajectories. In each case the maximum useful 
information is obtained if the perturbed trajectory is followed for a time 
which is somewhat larger than the longest relaxation time characterizing the 
dynamical process under investigation. 

The outline of the remainder of the paper is as follows. In Section 2 we 
give a general account of the method in the framework of linear response 
theory; in Section 3 we discuss the choice of mechanical perturbation and the 
character of the different responses; in Section 4 we give some details con- 
cerning the numerical solution of the equations of motion; and in Section 5 
we summarize the advantages and limitations of method and consider some 
possible generalizations. For  simplicity we restrict the detailed discussion to 
the case of monatomic systems. 

2. G E N E R A L  D E V E L O P M E N T  

Let c~(r) be a dynamical variable of the form 

N 

~(r) = ,=~ ~, 8(r - r~) 

with 

(2.1) 

c~(r, t) = e x p ( -  i~ot) c~(r) (2.2) 

where ~ is a property of particle i, and may, however, be a function of the 
phase space coordinates rj, pj of all particles j ( j  = 1 to N). Now suppose 
that the system is subjected to a weak external field q~(r, t) which couples to 
the variable c~. The total Hamiltonian in the presence of the perturbation is 

= ~o  + ~ ( t )  (2.3) 

where ~o  is the equilibrium Hamiltonian and ~ ( t )  represents the interaction 
between the system and the field 

f = - = cqff(r,, t) (2.4) og~i(t) dr c~(r)~(r, t) - =  

If  the perturbation is applied at t = 0, then for any observable property of t h e  
system, O say, the mean change (O(r)~t induced by the perturbation after a 
time t is given by ~1,~) 

f5  (O(r))t = /3 dr' dt' (O(r, t)a(r', t'))0~(r', t') (2.5) 

where/3 = 1/kBT and, for simplicity, we have assumed that (O(r))o = 0; 
clearly Eq. (2.5) corresponds to the statistical response of Eq. (1.6). In writing 
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Eqs. (2.4) and (2.5) we have omitted the appropriate contraction of vectorial 
indices which must appear if ~ is not a scalar. 

We now consider the special case when a is a conserved quantity, obeying 
a conservation law of the general form 

a(r, t) + V.J~(r ,  t) = 0 (2.6) 

where J ~  is the corresponding current; J ~  may be either a vector (if c~ is a 
scalar) or a second-rank tensor (if ~ is a vector). Equation (2.5) can then be 
rewritten as 

(O(r))t =/3 dr' dt' (O(r, t ) r  ', t'))o V~,(r', t') (2.7) 

or, since the time correlation function appearing in Eq. (2.7) is a function only 
of the differences r - r' and t - t', as 

f' 
(O(r))t = dr' dt' (O(r - r', t - t ' ) J"(0 ,  0))o Vq~(r', t') (2.8) 

Taking the Fourier transform in space, we obtain 

(O(k))t = f i V i  t dt' (O(k, t ) j ~ ( - k ,  t'))oik~(k, t') (2.9) 
d . . .  co 

where for the transform of a function f(r)  we use the definition 

f(k)  = (1/V) f drf(r)  exp( -  ik. r) (2.10) 

In interpreting Eq. (2.8) or Eq. (2.9) it is again necessary to incorporate the 
appropriate contraction between vr and Vq~ or between j ~  and k~. 

Given an interaction of the type displayed in Eq. (2.4), the equations of 
motion in Hamiltonian form are 

a ~  = p2 _ 4,(r,, t) &q (2.11) i'~ = ap~ m 

a.Z, ~ a ~  o ~ ~3~j aq~(r,, t) (2.12) 
j = l  

and in Newtonian form are 

- ar--~ + j.E= 1 q~(ri' t) ~ + cq 0r~ m ~ 1 ~(r~, t) #Pi! (2.13) m~ 

The final term on the right-hand side of (2.13) appears only when the per- 
turbation is dependent on velocity, as is true in the cases discussed in Sections 
3.4 and 3.5. If the perturbation is an impulsive force, care is needed in taking 
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the derivative with respect to time; note that d/dt denotes a total derivative. 
In writing Eq. (2.4) we have assumed that the nature of the applied field 

is such that the interaction with the system can be represented by an additional 
term in the Hamiltonian. However, we may also wish to study induced 
transverse currents (of number, mass, charge, etc.). In such cases the per- 
turbation is a transverse field and cannot be described in this simple way. 
Nonetheless, if the applied field is a function only of coordinates, an equation 
similar to Eq. (2.5) can still be derived, the quantity a taking the form 

N 

a(r) = ~, ~,,~, 3(r - r,) (2.14) 
i = 1  

where ~,~ is the particle property which couples to the external field. Thus 
Jackson and Mazur <3) have shown that if the system is subjected at time 
t = 0 to a weak vectorial field ~(r, t) such that 

v x g --# o, v . g  = 0 (2.15) 

and the force acting on particle i is given by 

F(r,, t) = r,g(r,, t) (2.16) 

then the mean change in a variable O is 

(O(r))t = dr' dr' (O(r, t) y,t,(t') 
* , -oo  i = 1  

x ${r' - r,(t')})o.~(r', t') (2.17) 

o r  

L (0(k))t  = flV dt' (O(k, t) y,t,(t') 

x exp{ik.r,(t ')})o.~(k, t') (2.18) 

The total Hamiltonian of the system is now unchanged by the applied field, 
which appears instead as an additional term in the equations of motion. The 
latter now take the simpler form given by 

t ,  = OYdo/ap, = p d m  (2.19) 

#, = - ~ o / O r ,  + 7,~(r,, t) (2.20) 

We have so far said nothing about the explicit time dependence of the 
applied field. This can be separated from the spatial dependence of the 
perturbation by writing 

r t) = r (2.21) 
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or, in the case of  a transverse field, 

~(r, t) = ~(r)f(t) (2.22) 

which in either event represents a spatial field modulated by a scalar function 
f(t). The form o f f ( t )  is arbitrary, but the choice of greatest practical interest 
is 

f( t)  = 3 ( t -  to) (2.23) 

where ~(t) is the Dirac delta function. This represents an impulsive force 
applied at t = to; to simplify the formulas we shall always assume that 
to = 0. From Eqs. (2.9) and (2.17) it is easy to see that the response to a delta- 
function perturbation is the time correlation function itself. In some earlier 
calculations we used a step-function perturbation of the form 

f( t)  = 0  if t < to 

= 1 if t > to (2.24) 

representing a steady field switched on at t = to. In this case the response is 
the time integral of the correlation function. It follows that with a proper 
choice of  the variables c~ and O the limiting drift current, namely 

lim{O(k))t 
t-~oO 

is closely related to a certain transport  coefficient. In most circumstances, 
however, the structure of the correlation function is also of  interest and for 
that reason alone use of  a delta-function perturbation has generally more to 
recommend it. In addition, when the applied field is velocity dependent, 
integration of the equations of  motion is more cumbersome when a step 
function is used. The subsequent discussion is therefore limited to the case of  
delta-function perturbations. 

3. F O R M  OF THE M E C H A N I C A L  P E R T U R B A T I O N  

We want now to show how the general formalism of Section 2 can be 
adapted to specific cases. To avoid widening the discussion too far, we shall 
focus most of  our attention on the important case of  dynamical variables 
satisfying a conservation law. I t  is clear on general grounds that the most 
straightforward way of exciting a current J ~ ,  say, is by applying a field which 
couples directly to the corresponding conserved variable a. This allows a 
study of the autocorrelation function of the quantity j ~ ( k ,  t) f rom which, in 
the limit k, oJ -+ 0, a transport  coefficient can be extracted. It is equally clear, 
however, that any such perturbation will simultaneously give rise to the full 
set of  cross effects described by the matrix of  kinetic coefficients. In multi- 
component  systems the number of cross effects is much larger than in pure 
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fluids; this makes it natural to attempt the measurement of cross transport 
coefficients such as thermal diffusivity, quantities which are extremely difficult 
to determine by the standard molecular dynamics method. 

The detailed way in which the mechanical equations of motion are 
modified by the perturbation depends on the character of the variable a. Thus 
the mechanical perturbation has a different form according to whether a, is 
(i) independent of the phase space variables (as when ~r is the longitudinal 
particle current); (ii) a function of the momentum p~ (as when J ~  is a com- 
ponent of the stress tensor); or (iii) a function of p, and of all coordinates rj, 
j = 1 to N (as when +,r is the energy current). We shall consider each of these 
in turn, together with the extension of (i) to the case of transverse currents. 
Other possibilities can be envisaged, but are of less direct physical interest. 
Apart from the brief discussion of mixtures given in Section 3.3, we limit the 
discussion to the case of one-component systems. 

3.1.  L o n g i t u d i n a l  P a r t i c l e  C u r r e n t  

We consider first the case of an external field which couples to the particle 
density n(r), the Fourier components of which are defined by 

N 

~(k) = (l/V) ~--~1 exp( - ik . r , )  

The corresponding conservation law is given by 

~/(k, t) + ik.J"(k, t) = 0 
where 

(3.1) 

(3.2) 

N 

J~(k) = (1 / V) ~/r+ exp( -  ik. r~) (3.3) 

is the particle current; from Eq. (3.2) we see that density fluctuations are 
linked only to the longitudinal component of the current. 

The perturbation in this example is of the form 

~ ( t )  = - f  dr n(r)~(r, t) = - V ~ ~(-k)~(k,  t) (3.4) 
k 

where ~(r, t) is a scalar field (with dimensions of energy) and the sum on k 
runs over all wave vectors allowed by the periodic boundary conditions used 
in the molecular dynamics calculations. In practice, given the assumption of 
linearity, we are concerned only with the response to a single Fourier com- 
ponent of the external field, k say, which we shall assume to be of the form 
k = (k, 0, 0). The external field can therefore be written as 

~(r, t) = q~ exp(ikx) 3(0 (3.5) 
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and Eq. (3.4) simplifies to 

~ ( t )  = -Vh(-k)q~(k, t) = - V h ( - k ) ~  3(t) (3.6) 

By identifying ~ with n we see from Eq. (2.9) that 

(O(k)), = f l V ~  (O(k, t)a~n(-k, O))oik~O 

= flV(O(k, t ) Jx" ( -k ,  O))oik* (3.7) 

In particular, the longitudinal particle current induced by a field of unit 
strength is given by 

1 
(a~"(k))t = flV(Jx~(k, t )a~"( -k ,  O))oik = ~ Cz(k, t) (3.8) 

where 

C,(k, t) = k2(Jx"(k, t )a~"( -k ,  0))0 (3.9) 

is the equilibrium longitudinal current autocorrelation function. 
Equation (3.8) shows that the response in k space to the field (3.5) is 

purely imaginary. This means only that the induced current is out of phase 
with the driving field by exactly �89 and it is easy to show that the response in 
r space to a real applied field is purely real. Taking the inverse transform of 
Eq. (3.8) for the case when only one Fourier component is excited, we see that 

(1 / O)(Jx"(r))t = (ifi V/k) Cz(k, t) exp(ikx) (3.1 O) 

so the response to a real field of the form 

6(r, t) = �89 + exp(-ikx)} 8(t) = qb 3(t) cos kx (3.11) 

is given by 

t ( J : ( r ) ) t  = ~i[3V C~(k, t){exp(ikx) + exp(-ikx)} 

_ -[3V C~(k, t) sin kx (3.12) 
k 

But from Eq. (3.8) we see that the real part of the corresponding Fourier 
component of the induced current is zero. Thus 

= 2, sin kx~ t= ---k- C,(k, t) (3.13) 

where the left-hand side gives the response to a field varying as cos kx. If, on 
the other hand, we choose to perturb the system with a field varying as sin kx, 
we must look for the response in the real part of the current. 

From the general result given by Eq. (3.7) we see that a perturbation of 
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the form of (3.5) will also induce change in other dynamical variables, the 
stress tensor (momentum current) T and the energy current je, for example. 
However, the stress tensor is linked to the particle current by the conservation 
law 

mJ~(k, t) + ik.l"(k, t) = 0 (3.14) 

Thus observation of the response in the diagonal element 2Px~ yields only the 
time derivative of C~(k, t). This particular type of cross effect is therefore 
rather uninteresting. Observations of the thermal response, given by 

(1/dP)(Jxe(k)) t = -flV(Jxe(k, t)Jxn(-k, O))oik (3.15) 

provides a measure of the coupling between the particle current and the flow 
of energy. 

3.2.  T r a n s v e r s e  P a r t i c l e  C u r r e n t  

In the case of the transverse component of the particle current the 
required perturbation is of the general form of Eq. (2.22) with the restrictions 
imposed by (2.15). Typically, therefore, choosing again the vector k = 
(k, 0, 0) and setting 7'~ = 1 for all i, the applied force field takes the form 

~:y(r, t) = E exp(ikx) 8(0, ~:x(r, t) = ~:~(r, t) = 0 (3.16) 

On substituting in Eq. (2.17), we obtain 

(O(k)), = flV(O(k, t ) Jy" ( -k ,  0))0 E (3.17) 

which is the transverse analog of Eq. (3.7). In particular, the response seen in 
the transverse current itself is 

1 

1 /3v 
= (Ju"(k))t = flV(Yu"(k, t)Yy"(-k, 0))0 = ~ -  Ct(k, t) (3.18) 

where 

Ct(k, t) = k2(Jy"(k, t ) Ju"( -k ,  0))o (3.19) 

is the transverse current autocorrelation function. The response is in this case 
purely real, showing that the induced current is now in phase with the driving 
force. The response to a real force 

is therefore 

~(r) = (0, E cos kx, O) 

( ~ ) = fiV2 ct(k, t) 1 p~ cos kx~ 
i = 1  t 

(3.20) 

(3.21) 
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The possibility of studying cross-correlation effects again exists, but these are 
likely to be small, since in the hydrodynamic limit the transverse current is 
decoupled from all other fluctuating variables. 

3.3. Binary Mixtures 

The arguments of the two preceding sections are easily generalized to 
multicomponent systems. Consider, for example, the case of a binary mixture. 
If  N~ is the number of particles of species s, with N = N1 + N2, then the 
Fourier components of the partial densities may be defined as 

1 ~r. 
fis(k) = ~ ~--~1 exp(-ik.r~s),  s = 1, 2 (3.22) 

where r~ denotes the coordinates of particle i of  species s. The total number 
density is then given by 

~(k) = ~l(k) + ~2(k) (3.23) 

but in addition we may introduce the mass density 

rh(k) = mil l (k)  + m2~2(k) (3.24) 

and, for uncharged systems, the concentration 

e(k) = czh~(k) - c~h2(k) (3.25) 

where ms is the mass of a particle of species s and c~ = Ns/N. In the case of  
charged fluids the analog of  (3.25) is the charge density 

~(k) = q ~ ( k )  + q2~2(k) (3.26) 

where q~ is the charge carried by particles of species s. 
Each of the densities (3.24)-(3.26) obeys a conservation law similar to Eq. 

(3.2) and both the longitudinal and transverse components of the correspond- 
ing currents can be induced by the methods already discussed. The only extra 
step required is to identify ~ (or 74) with the appropriate scalar quanti ty--  
mass, concentration, or charge--appearing in the definitions of the densities. 
This makes it straightforward to study a wide variety of cross effects: the 
coupling of concentration currents with the flow of energy, the mixing of 
modes of optical and acoustic character, and so on. Of greater importance, 
perhaps, is the fact that transverse currents of concentration or charge can be 
studied even in the limit k = 0. This offers a practical means of measuring 
electrical conductivity. By way of illustration, consider the case of a mono- 
valent molten salt, for which we may use the notation s = + , - ,  with 
q§ = e and q_ = - e .  If  a homogeneous force field of the form 

= (0, E, 0) (3.27) 
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is applied and if 7'~ is set equal to the charge on particle i, we find as a special 
case of Eq. (2.16) that the response in the y component of the microscopic 
electric current I defined by 

is 

N+ N- 

I = e ~ i'~+ - e ~ i3._ (3.28) 
i=l Y=l 

(e/E)<Iy>t = fl<Iu(t)Iu(O)> o (3.29) 

It follows immediately from the well-known formula of Kubo ~> that the 
electrical conductivity cr is given in terms of the response by 

= ( e / V E  dt <Iu>t (3.30) 

A similar argument applied in the case of uncharged fluids leads to an 
expression for the interdiffusion coefficient. 

3.4.  S t ress  T e n s o r  F l u c t u a t i o n s  

The coefficient of shear viscosity ~s is related through a Kubo formula to 
the long-wavelength limit of the autocorrelation function of an off-diagonal 
element of the stress tensor and the longitudinal viscosity ~ = ~ s  + ~: (~: 
being the bulk viscosity) is similarly linked to the autocorrelation function of 
a diagonal element of T. Specifically <2,m 

~7~ = f l V  dt ( ~ ( 0 ,  t)2f'~y(0, 0)>o (3.31) 

,~, --  ~ v  d t  <{~x,~(0, t )  - P}{L,x(o,  o) - e}>o (3.32) 

In writing Eq. (3.32) we have taken account of the fact that <~xx(0)>o is equal  
to the pressure P. In the case of pairwise additive forces the microscopic stress 
tensor is given by 

1 N N N 

T(k) = ~ ,=~1 mi',f, exp( - ik . r , )  + 1__ ~ ~ ro.r,; v'(r,j)Q,y(k) (3.33) 
2V ~,j r~s 

where v(r)  is the pair potential, v ' ( r )  = dv(r) /dr,  r~j = r~ - r~, and 

Q~j(k) = [exp(-  ik. rj) - exp( -  ik. r~)]/ik.r~j (3.34) 

In studying the viscous modes of the system it is clear from the earlier 
discussion that the most suitable form of applied field is one which couples to 
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the momentum density and consequently must be a vector field. In this case 
the perturbation is velocity dependent, having the form 

= - f  dr Jn(r).4(r, t) = - V ~  ]n(k).~(k, t) (3.35) 
k 

which corresponds to identifying a~ with ~. If  we write dp(r, t) (which has the 
dimensions of momentum) as 

dp(r, t) = dp(r) 3(t) (3.36) 

we see from the conservation law (3.14) that the response in the general case 
is given by 

(O(k))t = " ~  ~ (O(k, t )T,~(-k,  O))oik~,~(k) (3.37) 

It is clear from Eq. (3.37) that by varying the form of dp(r) we can couple 
the field to a diagonal element of T, an off-diagonal element, or some com- 
bination of the two. Choosing 

~(r) = (0, r exp(ikx), 0) (3.38) 

and assuming, as always, that k is parallel to the x axis, we find that Eq. (3.37) 
reduces to 

(O(k))t = (J3V/m)(O(k, t)Tx~(-k, O))oikq) (3.39) 

In particular, choosing for 0 the xy component of T(k), we see that the 
response is given by 

(Txy(k))t = ([3V/m)(T~(k, t ) T ~ ( - k ,  O))oik(b (3.40) 

As in the case of the longitudinal particle currents, it follows from Eq. (3.40) 
that the response to a field varying as cos kx  is in the imaginary part of 
T~y(k, t). Thus in the limit k --+ 0 we find that 

fo ~ = (m/k~) dt lim(Im Tx~(k))t 
~-~0 (3.41) 

In practice, in contrast to the case of the electrical conductivity, we are 
unable to take the k -+ 0 limit, and it is well known that we cannot interchange 
the limiting operation and the integration, since the integral then vanishes. 
The second of these difficulties can be avoided by replacing the upper limit of 
integration by a time ~- which is finite but sufficiently large for the response to 
be essentially zero. However, the result thereby obtained for ~ will be useful 
only if the smallest value of k consistent with the periodic boundary conditions 
is sufficiently small to give an adequate estimate of the integrand in Eq. (3.41). 
For k > 0 we can study both the stress-stress autocorrelation itself and 
cross-correlations such as that between the stress tensor and the energy 
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current. The latter quantity plays a role in generalized hydrodynamic de- 
scriptions of density fluctuations in liquids. (1~ 

In Fig. 1 we show some results obtained for the wavelength dependence 
of the function C(t) = <Ira Txy(k))~ for the case of a Lennard-Jones fluid at 
a reduced number density na 3 =  0.75 and mean reduced temperature 
k~T/~ = 1.15; the calculations were made on a system of 256 particles in a 
cubic box. It is clear from the figure that the response is a rapidly varying 
function of  k. In particular, the marked growth with increasing k of  the 
region of negative autocorrelation means that the apparent shear viscosity 
obtained from Eq. (3.31) decreases rapidly with k. Choosing values of o and 

appropriate to argon, (~2~ we find that for the smallest accessible wave vector 
the apparent shear viscosity is ~ = 0.44 • 1 0 - 3 g c m - ~ s e c - L  This is 
approximately three times smaller than the experimental value ~3~ and it is 
clear that the major part of the discrepancy is due to the fact that the wave- 
length associated with the perturbation is too small for Eq. (3.41) to be useful. 
Improvement could be sought by, for example, extending the length of the 
molecular dynamics box in one direction. On the other hand, the shear 
viscosity can also be related to the response in transverse current to a shearing 
field, which was discussed in Section 3.2. A simple hydrodynamic (3'~3~ 
argument shows that the shear viscosity can be expressed as 

~f l = dt lim(k2/n2E)< Jy~(k)>t 
k-.o (3.42) 

I 

I \ 

0 \ 2s " - - - ~ o -  __-~-ys? t 

�9 / -- 
\ /~ 

~176 /" 

FiB. 1. The wave number-dependent function C(t) for the Lennard-Jones fluid at 

ne 3 = 0.75, kBT/e = 1.15, normalized to unity at t = 0. Full curve: ko = 0.899; 

dashed curve: ka = 1.798; dash-dotted curve: ke = 4.495. The unit of time is 

h = 0.032(mo2/48~) I12, equal to 10- z4 sec in the case of argon. 
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where (Ju"(k))t is the response defined by Eq. (3.18). We are now much more 
favourably placed for taking the k = 0 limit, since the work of Levesque et 
al. (14) on the Lennard-Jones fluid and our own calculations for molten 
salts (6,15) show that the integral in (3.42) is only weakly k dependent at small 
k. Typically the extrapolation from the smallest accessible wavenumber to the 
limit k = 0 involves a correction of approximately 20-3007o. 

If, in place of (3.38), we choose 

~(r) = (qb exp(ikx), 0, 0) (3.43) 

Eq. (3.39) becomes 

(0(k))t  = ([3Vlm)(O(k, t ) T x x ( - k ,  O))oikdP (3.44) 

and substitution of Txx for 0 leads to an equation analogous to (3.40). This 
can be treated in the same way to yield an expression for the longitudinal 
viscosity. The constant term appearing in Eq. (3.32) does not enter the 
equation analogous to (3.41), since (Tx~(k)>0 = 0 for k # 0. 

3.5, 

is 

Energy Fluctuations 

The formula analogous to (3.31) [or (3.32)] for the thermal conductivity 

~ 0  ~ )tT = fill" dt <a?xe(0, t)jxe(O, 0)>0 

where je is the energy current, defined as 

1 N N N t i=~1 1 x-" x-" . v (r~s) r ~ "k" Je(k) = ~ e~t~ e x p ( - i k . r  0 + 5--~Z, ~,  r~s'ris --75-,.. is~dist ) 
"= - - - -  i@ j  i j  

(3.45) 

(3.46) 
e~ is the energy of particle i 

N 

e, = (Ip~i2/2m) + ~ v(r,:) (3.47) 
Y>i 

and the local energy density 
N 

e(k) = (1 / V) ~ e, exp( -  ik.r,) (3.48) 
i = 1  

is linked to the energy current by the conservation law 

J(k, t) + ik.Je(k, t) = 0 (3.49) 

To study thermal fluctuations it is clearly appropriate to apply a field 
which couples to the energy density. In this case the interaction with the 
system is represented by the Hamiltonian 
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P 
~,'~(t) = - - j  dr e(r)q~(r, t) = - V ~  ~(-k)~(k,  t) (3.50) 

k 

where 4 is a dimensionless scalar field. This corresponds to setting a, = e~. 
Proceeding along the now familiar lines, we see that the response in a variable 
0 is 

(0 (k) ) ,  = 13V~ {0(k, t )a~e(-k,  0))0ik~4(k ) (3.51) 
v 

In particular, taking k = (k, 0, 0) and 0 = Jx e, we find that 

( Le(k))t  = fl V(Jx'(k, t )Le(  -- k, O))oikCb (3.52) 

Thus 

~0 ~176 
AT = dt lim[(Im Jxe(k))dk~] (3.53) 

k--*0 

if the applied field varies as cos kx. The remarks following Eq. (3.41) are also 
relevant to the calculation of the thermal conductivity. As we have recently 
shown, (7~ the apparent thermal conductivity is a rapidly varying function of k, 
but extrapolation to k = 0 yields a result for the Lennard-Jones fluid in fair 
agreement with experimental data on argon. As in the case of the shear 
viscosity, the calculation could again be improved by increasing the size of 
the molecular dynamics box in one dimension. It is also possible that the 
expression for the thermal conductivity in terms of the heat current (see 
Appendix B of Ref. 2) would yield a result which converges more rapidly to 
the k = 0 limit. By choosing 0 = afx" or 0 = T~u in Eq. (3.51) we can again 
study the coupling between energy current and particle current or energy 
current and the stress tensor. On grounds of symmetry the cross-correlation 
functions determining the response must be identical to those introduced in 
earlier sections. 

4. S O L U T I O N  OF THE E Q U A T I O N S  OF M O T I O N  
A N D  M E A S U R E M E N T  OF THE R E S P O N S E  

In solving the equations of motion of  the particles we use for the most 
part the central-difference or " leap-frog" algorithm described by Verlet. ~16~ 
At t = O, however, the perturbation appears as an impulsive force and some 
modification of the algorithm is needed. 

Let h be the time step in the numerical integration. Making a Taylor 
expansion forward and backward in time about t = O, we find 

r=(h) = r~(O+) + t~(O+)h + �89 2 + O(h s) (4.1) 

r~(-h)  = r d 0 - )  - t d 0 - ) h  + �89 2 + O(h a) (4.2) 
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Thus, to terms of order h a, the predicted coordinates at t = h are given by 

r~(h) = 2r~(0-) - r~(-h) + i:~(0-)h 2 + {r,(0+) - r~(0-)} 
+ {i'~(0+) - i ' ,(0-)}h + �89 -i:~(0-)}h 2 (4.3) 

The first three terms on the right-hand side are the customary ones: the three 
succeeding terms arise from discontinuities in (i) position, (ii) velocity, and 
(iii) acceleration. Not  all the additional terms will contribute in every case. 
In particular, when the perturbing field acting on particle i is a function solely 
of its position r~, the only discontinuity which appears is that in i'~. 

To see in detail what happens at t -- 0 it is helpful to rewrite Eq. (2.13) 
in a form in which the singularity in time appears explicitly. This we achieve 
by writing 

~h(t) = P(t)  + Q(t) 3(0 + (d/dt){R(t) 3(t)} (4.4) 

where P, Q, and R are the regular functions of t defined by 

mP(t) = - 8~o/er, (4.5) 
N 

mQ(t) = ~----~ + -= ~ (4.6) 

R(t) = - q~(r,) Dcq/~p~ (4.7) 

In the transverse case the function P(t)  retains the same form, R(t) is zero, and. 

Q(t) = 7,~(r,) (4.8) 

By integrating Eq. (4.4) we find that 

f,(0 + ) f~ (0-  ) lim i t - = ~ , ( t ' )  d t '  = Q(0) + R(0) 3(t) (4.9) 
t--*O + do_  

The first term on the right-hand side of (4.9) is just the discontinuity in 
velocity appearing in Eq. (4.3) and the second term represents an impulsive 
change in velocity at t = 0. The latter gives rise to a discontinuity in coor- 
dinates of the form 

r , (0+)  -- r~(0-)  = R(0) (4.10) 

This last result follows immediately from integration of the delta-function 
term in Eq. (4.9). 

From the discussion just given we see that if the perturbation is velocity 
independent, the effect of the applied field appears only as a discontinuity in 
i-~. In the more general case the function R(t) is nonzero [cf. Eq. (2.13)] and in 
consequence there is additionally a discontinuity in r~. This in turn implies a 
discontinuity in i:~, since the total intermolecular force acting on particle i is a 
function of the coordinates of all interacting particles. Formulas giving the 
discontinuities in r~ and t~ in particular cases can now be obtained by inserting 
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in Eq. (4.6) and (4.7) the corresponding choices for ~ and the applied field, 
making the appropriate contraction of indices when the latter are vectorial 
quantities. 

We now turn to the question of the computation of the response. The 
basic procedure we use is illustrated schematically in Fig. 2. The thick curve 
represents the trajectory in phase space which the system follows in the ab- 
sence of  any applied field. Branching off from this are the trajectories resulting 
from switching on a perturbation at times 1, 2, 3, 4 ..... The response to the 
perturbation for t > 0 is given by 

(O(k))t  = (exp(- is  0(k))0 

fo = lim ~.-1 d , '  exp(i~~ ') e x p ( -  i~~ O(k) (4.11) 

It is important to note that the average appearing on the right-hand side of  
(4.11) is taken over the unperturbed trajectory; the Liouville operators ~ and 
~~ have the same meaning as in Eq. (1.5). In principle, Eq. (4.11) could be 
used to calculate directly the mean change in 0 due to the perturbation, since 
we can always formulate the problem in such a way that (O(k))o = 0. In 
practice, because the unperturbed trajectory is not of infinite length, the mean 
value of  0 along that trajectory will invariably have some small but nonzero 
value. Furthermore, the perturbation used is very small; typically the 
parameter q~ (or E) is chosen such that the changes in coordinates and 
momenta are of order one part in 10 6 . Thus the systematic response is in 
general much smaller than the statistical fluctuations. We therefore choose to 
measure the response in the manner described by Eqs. (1.5) and (1.6), that is 
to say, by averaging the difference in the variable of interest in perturbed and 

f ~ 3- - 

\ 
Fig. 2. Schematic illustration of the procedure used in calculating the response. The 
perturbation is assumed to be switched on at times 1, 2, 3, 4 ..... and the broken lines link 
corresponding points on the perturbed and unperturbed trajectories. Calculation of the 
difference in the value of a given dynamical variable at two such points yields the 
mechanical response discussed in the text. 
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unperturbed trajectories at a time t after the field is switched on. For times 
which are not too long the improvement achieved is dramatic. 

We come finally to a question of purely computational significance. Let 
us write the coordinates at time t = h in the form 

r~(h) = r~o(h) + ~r~(h) (4.12) 

where r~o(h) are the coordinates at time h in the absence of the perturbation 
and 3r~(h) is determined by the discontinuities on the right-hand side of (4.3). 
In principle, we must integrate r~ and r~o separately. From the practical point 
of view this is the simplest way to proceed, but on the other hand it may be 
computationally more economical to solve instead an approximate differential 
equation for 3r~ itself. The exact equation of motion for 3r~(t) is 

m ~ i ( t )  = m~( t )  -- m~o(0) 

= F,({rj(t)}) - F,({Uo(t)} ) 

+ Q( t )3 (0  + (d /d t ) {R( t )3 ( t ) }  (4.13) 

where F~ is the force acting on particle i. We can now approximate the 
difference in internal forces by the first term in the Taylor expansion 

3F,(t) = F,({U(t)} ) - F,({U0(t)} ) 

-~ ~ F,({rj0(t)}). 3r~(t) (4.14) 

If  the potential energy is pairwise additive, Eq. (4.14) may be rewritten as 

gF,(t) : ~ ~'gr, j , r ~ j d  (v'(r,j.)'~r,j.3r,j} (4.15) 
j , ~ r i ~  v ( r i3  r~jdr~j \ r~j / 

where 

3r~j = 3 r j ( t ) -  3r~(t) (4.16) 

and r~j is to be evaluated at time t. The justification for this linearization is the 
observation that the mechanical response is linear with respect to the applied 
force over an extremely wide range. The equation of motion for 3r,(t) for 
t > 0 is now solved in the usual way by writing 

3r~(t + h) = -3r~(t - h) + 23r,(t) + 8F~(t)h 2 (4.17) 

where 8F~(t) is given by Eq. (4.14). Equation (4.17) is to be solved subject to 
the initial condition that 

3r,(O) = r~(O+) - r~(O-) (4.18) 
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with 3r~(h) given by Eq. (4.3). The advantage of proceeding in this fashion 
lies in the fact that ~F~(t) can be computed at rather small cost in the same 
loop as the calculation of F~(t) along the equilibrium trajectory. 

If this linearization is used, it is clearly appropriate to measure a response 
which is also linearized with respect to the phase space variables. This may be 
achieved by approximating the mechanical response in the form 

exp(-  i~t) 0(k) - exp( -  is 0(k) 

- ~=1 ~ r ~  0(k, t).3r~(t) + ~ 0(k, t).3p~(t) (4.19) 

from which the statistical response can be obtained in the manner already 
described. Proceeding in this way we find, for example, that the induced 
particle current [cf. Eq. (1.5)] is given in linearized form by 

N 
1 . 

2~L~(k, t) -~ ~ ~ {3x~(t) - ik2~(t) 3x~(t)} exp{-ikx~(t)} (4.20) 
~,=J. 

This linearization is consistent with the linearization of the equations of 
motion, and furthermore it is much the most sensible method available for 
computing the response when the equations of motion are solved in linearized 
form, since in that case the quantities known are not the perturbed coordinates 
and velocities themselves, but only the differences 3r~(t) and 3~(t). Recon- 
struction of the perturbed trajectory would obviously be very wasteful. 
Complete linearization also allows the computations to be carried out in 
single precision on, for example, IBM computers. Double-precision arith- 
metic is essential when the full equations of motion are solved along the 
perturbed trajectory. It must be said, however, that for the stress tensor and 
the energy current the calculation of the linearized response adds substantially 
to the length of the computation. When complete linearization is adopted the 
strength of the perturbing field enters only as a multiplicative factor. 

5. D I S C U S S I O N  

The method we have described differs from other nonequilibrium 
molecular dynamics techniques (~3,17-19) primarily insofar as the perturbation 
used is very small. This has two important consequences. First, the results 
obtained may legitimately be interpreted in the framework of linear response 
theory. Second, we avoid the systematic heating up of the system, energy 
drift, and other undesirable effects associated with the use of strong external 
fields. The method therefore represents a direct and economical means of 
studying the dynamical properties of liquids. Furthermore, again in contrast 
to other work, the method yields the complete, frequency-dependent response 
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of the system as described by the corresponding time correlation function. 
The saving in cost which can be achieved is very considerable. In the calcula- 
tion of electrical conductivity, for example, we find (6~ a reduction in computing 
time by a factor of  approximately five compared with that required with the 
conventional equilibrium technique. C2~ Its main disadvantage is the fact that, 
except in special cases, it is limited to the study of the response to a disturbance 
having a finite wavelength. This creates difficulties when the quantity sought 
is the value of a transport  coefficient. A less serious problem is the fact that 
it cannot be used for the study of very long-time (low-frequency) behavior, 
since in that case the correlation between perturbed and unperturbed trajec- 
tories is lost and the subtraction technique is no longer useful. In practical 
terms this limits its application to times which, for monatomic systems, are 
typically of  order 200 integration steps. The accuracy of the algorithm which 
is used is here an important  factor. In particular there is a strong case for 
adopting a more accurate scheme for calculating the velocities of  the particles 
than that  usually adopted with the leap-frog scheme. We should point out 
finally that though we have limited the discussion to the case of  collective 
dynamical properties, the method is also very well suited to the study of  
single-particle motion. In general, of  course, such phenomena are easily 
studied by the usual methods. However, in the case of  molecules in solution, 
particularly very dilute solutions, there is obvious scope for application of a 
suitably modified form of the method we describe. By proceeding in this way 
it should be straightforward to compute quantities such as the mobility of  an 
ion in a polar solvent, the reorientational correlation times of, say, a single 
molecule in an inert gas medium, the intrinsic viscosity of  polyatomic 
molecules, and so on. We hope to return to some of these questions in a later 
publication. 
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